Additive Manufacturing of Cfrp Composites Using Fused Deposition Modeling: Effects of Carbon Fiber Content and Length
نویسندگان
چکیده
Additive manufacturing (AM) technologies have been successfully applied in various applications. Fused deposition modeling (FDM), one of popular AM techniques, is most widely used method for manufacturing of plastic materials. Due to the poor strength properties of pure plastic materials, there is a critical need to improve mechanical properties for FDMfabricated pure plastic parts. One of the possible methods is adding reinforced materials (such as carbon fibers) into plastic materials to form carbon fiber reinforced plastic (CFRP) composites. The investigation in this paper is going to test if the properties of CFRP composites part will be enhanced compared with pure plastic part made by FDM. There are three major steps in this paper including producing thermoplastic matrix CFRP composites filaments extruded after blending plastic pellets and carbon fiber powder, printing parts in FDM process, and conducting tensile test. Effects of carbon fiber content and length on the mechanical properties (tensile strength, Young’s modulus, toughness, ductility, and yield strength) of specimens are investigated. This investigation will also provide guidance for future investigations of fabricating thermoset matrix CFRP composites by AM techniques.
منابع مشابه
Fiber Line Optimization in Single Ply for 3D Printed Composites
In conventional manufacturing processes of composites, Carbon Fibre Reinforced Plastic (CFRP) laminates have been made by stacking unidirectional or woven prepreg sheets. Recently, as a manufacturing process of CFRP, 3D printing of CFRP composites has been developed. The 3D printing process of CFRP composites enables us to fabricate CFRP laminates with arbitrary curvilinear fibre plies. This in...
متن کاملDevelopment of a Design for Manufacturing and Assembly (DFM/A) methodology concerning products and components made in composites of Carbon Fiber Reinforced Plastics (CFRP) used in the Aerospace Industry
Composites of carbon fiber reinforced plastics (CFRP) are being used to a greater extent in the aerospace industry due to their desired material properties. CFRP are attractive to use since they are light, strong and make it possible to integrate parts in in ways not possible in other materials. However, using CFRP is challenging since they may lead to more problems in final assembly. The aim o...
متن کاملFlexural Strengthening of Deficient Reinforced Concrete Beams with Post-Tensioned Carbon Composites using Finite Element Modelling
The application of external post-tensioned steel bars as an effective way to strengthen an existing bridge has been so far used in many different countries. In recent decades, however, they have been replaced by bars made from Carbon Fiber Reinforced Polymer (CFRP), as a material with high tensile strength and corrosion resistance, to address several concerns with steel bars such as their appli...
متن کاملDynamic Characteristics of Joined Steel and Carbon Fiber-Reinforced Plastic Tubes: Experimental and Numerical Investigation
The fundamental frequencies and mode shapes of steel and carbon fiber–reinforced plastic (CFRP) cylindrical shells with steel inserts were investigated using finite element analysis and modal testing. The free-free boundary condition was tested with modal testing using the roving hammer method and verified by finite element analysis using ABAQUS. The results show good agreement between the test...
متن کاملHierarchical Carbon Fiber Composites with Radially Aligned Carbon Nanotubes : Preservation of In - Plane Tensile Properties
Hierarchical carbon-nanotube (CNT)-based composites have significant potential to expand the performance and functionality of aerospace composite structures. Notably, circumferentially aligned CNT arrays have previously been grown on woven alumina filaments to form a "fuzzy fiber" reinforced plastic (FFRP) architecture with demonstrated improvements in interand intra-ply mechanical properties a...
متن کامل